1. Задание № 258

Сложность: II
Классификатор алгебры: 3\.8\. Неравенства высших степеней
Линейные, квадратные, степенные неравенства
i
Сумма всех натуральных решений неравенства
равна:
1) 11
2) 19
3) 21
4) 34
5) 36
Решение. Неравенство выполнеятся при
и при
Натуральными решениями являются числа 1, 2, 3, 4, 5, 6, 13. Их сумма равна 34.
Правильный ответ указан под номером 4.
Ответ: 4
258
4
Сложность: II
Классификатор алгебры: 3\.8\. Неравенства высших степеней
равна:
и
следовательно, натуральные решения неравенства: 1, 2, 3, 4, 5, 19. Их сумма равна 34.
равна:
и
следовательно, натуральные решения неравенства: 1, 2, 3, 4, 5, 6, 17. Их сумма равна 38.
равна:
и
следовательно, натуральные решения неравенства: 1, 2, 3, 4, 5, 6, 7, 15. Их сумма равна 43.
равна:
и
следовательно, натуральные решения неравенства: 1, 2, 3, 4, 5, 6, 7, 8, 11. Их сумма равна 47.